Illudins C₂ and C₃, New Illudin C Derivatives from *Coprinus atramentarius* ASI20013

IN-KYOUNG LEE, CHEOL-YOUN JEONG, SOO-MUK CHO, BONG-SIK YUN, YANG-SUP KIM[†], SEUNG-HUN YU^{††}, HIROYUKI KOSHINO^{†††} and ICK-DONG YOO*

Korea Research Institute of Bioscience and Biotechnology, KIST, P. O. Box 115, Yusong, Taejon 305-600, Korea [†]Applied Microbiology Division, National Agricultural Science & Technology Institute, RDA, Suwon, 440-707, Korea ^{††}Department of Agricultural Biology, Chungnam Nat'l University, Taejon, 305-764, Korea ^{†††}The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-01, Japan

(Received for publication March 11, 1996)

In the course of screening for antimicrobial antibiotics against *Staphylococcus aureus* from basidiomycetes, we isolated two active compounds, illudins C_2 (1) and C_3 (2), from the culture broth of *Coprinus atramentarius*, which was well known to produce coprine with aldehyde dehydrogenase inhibitory activity^{1~3)}. This paper presents the fermentation, isolation, structural determination and antimicrobial activities of 1 and 2.

The strain ASI20013 grown on potato sucrose agar medium was used to inoculate six 500-ml Erlenmeyer flasks containing 100 ml of the seed medium consisting of yeast extract 0.4%, malt extract 1.0% and glucose 0.4% (pH 6.0 before sterilization). The flasks were shaken on a rotary shaker for three days at 27°C. The seed culture was transferred into a 50-liter jar fermenter containing 30 liters of the above medium for production of compounds 1 and 2, and cultivation was carried out at 28°C for three days with aeration of 3 liters/minute and agitation of 130 rpm.

Compounds 1 and 2 were isolated from the fermentation broth (30 liters) by monitoring the antimicrobial activity against *S. aureus*. The fermentation broth was separated into filtrate and mycelia by centrifugation. The broth filtrate was applied to a column of Diaion HP-20. The column was washed with 30% MeOH and eluted with 70% MeOH. The active eluate was concentrated *in vacuo* and the resulting aqueous solution was

Table 1. Physico-chemical properties of 1 and 2.

	1	2
Appearance	Oil	Oil
Molecular formula	C ₁₅ H ₂₀ O ₃	C ₁₅ H ₂₀ O ₃
HREI-MS (<i>m /z</i>) found calcd.	248.1419 (M ⁺) 248.1412	248.1434 (M [⁺]) 248.1413
[α] ²⁰ _D	+20.0° (c 0.30, MeOH)	-15.4° (c 0.26, MeOH)
UV λ_{max}^{MeOH} nm (ϵ)	205 (9700) 264 (5800)	205 (11500) 270 (7300)
IR v (KBr) cm ⁻¹	3380, 1660, 1600, 1040	3380, 1660, 1600, 1040

extracted with ethyl acetate. After concentration of the solvent layer *in vacuo*, the residue was chromatographed on a silica gel column with $CHCl_3 - MeOH (10:1)$ as an eluent. The concentrate of the active eluate was applied to ODS column and eluted with 40% MeOH to give two active fractions. Each of two active fractions was further purified by preparative TLC (silica gel TLC, Merck 60 F₂₅₄), which was developed with $CHCl_3 - MeOH (10:1)$. Two active compounds with Rf values of 0.5 and 0.4 for illudins C₂ and C₃, respectively, were scraped off the TLC plates and extracted with $CHCl_3 - MeOH (3:1)$ to give 5 mg of 1 and 3 mg of 2.

The physico-chemical properties of 1 and 2 are summarized in Table 1. The EI mass spectroscopies of both compounds gave a peak at m/z 248 (M⁺) and fragments at m/z 233 (M-CH₃), 220 (M-CO), 215, 187 and 159.

Table 2. The ${}^{13}C$ NMR chemical shifts (ppm) of 1, 2 and illudin C.

Carbon No.	1	2	Illudin C ^a
1	188.2	188.1	185.8
2	149.3	148.9	149.6
2-CH ₂	116.9	116.9	115.5
3	33.9	33.7	34.0
4	70.7	70.5	70.2
4-CH ₃	25.1	24.9	26.4
4a	173.1	173.1	171.2
5	40.3	40.2	48.4
6	43.4	42.9	38.1
6-CH ₃	25.7	25.8	29.6
			29.7
6-CH ₂ OH	70.3	70.1	
7	43.9	43.5	45.2
7a	135.6	135.3	135.6
8	5.2	5.2	5.0
9	13.4	13.2	13.6

Compounds 1 and 2 were measured in CD₃OD and illudin

C was measured in acetone- d_6 .

^a Data taken from Ref. 1.

Table 3. The ${}^{1}H$ NMR chemical shifts (ppm) of 1, 2 and illudin C.

Positions	1	2	Illudin C ^a
2-CH ₂ a	5.87 (s)	5.82 (s)	5.82
b	5.19 (s)	5.15 (s)	5.14
4-CH ₃	1.34 (s)	1.28 (s)	1.34
5a -	2.88 (d, 19.0) ^b	2.69 (d, 19.0)	2.67
b	2.38 (d, 19.0)	2.49 (d, 19.0)	2.50
6-CH ₃	1.11 (s)	1.10 (s)	1.10, 1.14
6-CH ₂ OH	3.43 (s)	3.31 (s)	
7a -	2.60 (d, 16.0)	2.54 (d, 16.0)	2.39°
b	2.28 (d, 16.0)	2.22 (d, 16.0)	2.37°
8a	1.03 (m)	0.99 (m)	1.05
b	0.87 (m)	0.82 (m)	0.88
9a	0.15 (m)	0.13 (m)	0.12
b	1.13 (m)	1.08 (m)	1.18

Compounds 1 and 2 were measured in CD_3OD and illudin C was measured in acetone- d_6 .

^a Data taken from Ref. 1.

^b Proton resonance multiplicity and coupling constant (Hz) in parentheses.

[°] Assignments interchangeable.

Fig. 1. The structures of illudins C_2 (1), C_3 (2) and C.

Illudin C: $R_1 = R_2 = -CH_3$

Fig. 2. The relative stereochemistries of illudins C_2 (1) and C_3 (2) elucidated by NOESY data.

The arrows indicate NOE correlations.

Compounds 1 and 2 isolated as oil were determined to have a molecular formula of $C_{15}H_{20}O_3$ by high-resolution EI mass spectroscopic analysis and by ¹H and ¹³C NMR spectroscopic analyses. The UV spectrum of 1 also was similar to that of 2. The IR absorptions of both compounds at 3380 and 1660 cm⁻¹ suggested the presence of hydroxyl and carbonyl groups in their structures. All of these evidences including ¹H and ¹³C NMR spectra suggested that 1 may be a stereo isomer of 2.

The ¹H and ¹³C NMR spectral data of 1 and 2 are summarized in Table 2 and 3. The ¹H and ¹³C NMR spectra of 1 and 2 are quite similar to those of illudin $C^{4,5}$ as shown in Tables 2 and 3. The structures of compounds 1 and 2 were assigned by a direct comparison with that of illudin C⁴⁾. In ¹H and ¹³C NMR spectra of compounds 1 and 2, an oxylated methylene signal at 3.43 (¹H) and 70.3 (¹³C) ppm for 1, and at 3.31 (¹H) and 70.1 (¹³C) ppm for **2** replaced a methyl signal (6-CH₃) in illudin C (Tables 2 and 3). Thus plenary structures of 1 and 2 were determined as shown in Fig. 1. As the forgoing, Compounds 1 and 2 were suggested to be stereo isomer with $[\alpha]_D$ values at +20 and -15, respectively. The NOE experiments of 1 and 2 were consistent with the diastereoisomeric relationship between 1 and 2, permitting us to assign the relative configuration at C-4 and C-6. The NOESY data of 1

Table 4.	Antimicrobial	activity	of	1	and	2	in	the	serial
dilution	assay.								

Track and a linear	MIC (µg/ml) ^a				
rest organisms -	1	2			
Bacteria					
Staphylococcus aureus 209	12	12			
S. aureus R209	25	25			
Escherichia coli	2	1			
Salmonella typhymurium	>100	>100			
Fungi					
Botrytis cinerea	25	25			
Rhizoctonia solani	>100	>100			
Phytophthora capsici	25	25			
Fusarium oxysporum	>100	>100			
Pyricularia oryzae	>100	>100			

^a Determined after 24 hours of incubation at $37^{\circ}C$ for the bacteria and after 48 hours of incubation at $28^{\circ}C$ for the fungi.

showed the NOEs between 4-CH₃ and 5-Ha, and 5-Ha and 6-CH₃ while the NOEs between 4-CH₃ and 5-Ha, and 5-Ha and 6-CH₂OH were observed in **2**, as shown in Fig. 2. This result revealed that 4-CH₃ and 6-CH₃ situated on the same plane in **1** were on anti-plane in **2**. Their absolute stereochemistries were not determined.

Antimicrobial activity against some bacteria and fungi for 1 and 2 was evaluated in agar dilution method as shown in Table 4. The both compounds showed same minimum inhibitory concentrations of 12 and $25 \,\mu g/ml$ against *Staphylococcus aureus* 209 and *S. aureus* R209, multi-drug resistant strain, respectively.

References

- LINDBERG, P.; R. BERGMAN & B. WICKBERG: Isolation and structure of coprine, a novel physiologically active cyclopropanone derivative from *Coprinus atramentarius* and its synthesis *via* 1-aminocyclopropanol. J. Chem. Soc. Chem. Commun. 1975: 946~947, 1975
- HATFIELD, G. M. & J. P. SCHAUMBERG: Isolation and structural studies of coprine, the disulfiram-like constituent of *Coprinus atramentarius*. Lloydia 38: 489~496, 1975
- WISEMAN, J. S. & R. H. ABELES: Mechanism of inhibition of aldehyde dehydrogenase by cyclopropanone hydrate and the mushroom toxin coprine. Biochemistry 18: 427 ~ 435, 1979
- 4) ARNONE, A.; R. CARDILLO, V. DI MODUGNO & G. NASINI: Secondary mould metabolites. XXXIII. Structure elucidation of illudins C-E, novel illudane sesquiterpenoids isolated from *Clitocybe illudens*, using one- and twodimensional NMR spectroscopy. Gazz. Chim. Ital. 121: 345~348, 1991
- HARA, M.; M. YOSHIDA, M. MORIMOTO & H. NAKANO: 6-Deoxyilludin M, a new antitumor antibiotic: fermentation, isolation and structural identification. J. Antibiotics 40: 1643~1646, 1987